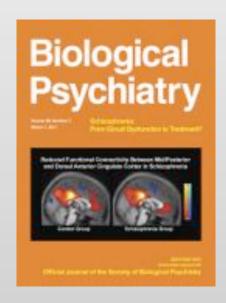

Topic 12 – DNA technology

Branko Aleksic, MD, PhD
Department of Psychiatry, Nagoya University

Copyright materials

Overview of genetic study (in psychiatry)


for MDD BP

psychiatry

Today's topics:

- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up

Schizophrenia GWAS

M. Ikeda, B. Aleksic et al, 2011 Biol Psychiatry

History of Schizophrenia Diagnosis

- Emil Kraepelin (1856-1926): dementia praecox
 - Early onset
 - Progress to dementia
 - Cf. Demetia presenilis (Alzheimer's disease) and manic depressive insanity

- Eugen Bleuler (1857-1939): schizophrenia
 - did not necessarily have an early onset
 - Doesn't (always) progress to dementia

Schizophrenia now

- Common psychiatric disorder
- Onset is usually in early adulthood
- Characterized by:
 - Positive symptoms (hallucinations)
 - Negative symptoms (lack of motivation, social withdrawal)
 - Cognitive symptoms (decreasing of IQ)
- Usually prolonged medication is required

Clinical course of Schizophrenia Copyright materials With treatment пеаипен Without treatment Premorbid **Progressive Prodromal** Residual Sociocognitive functioning **Psychosis** Birth 15 20 25 30

Approximate risks

	Schizophrenia	Schizoaffective	Bipolar disorder
Risk in general population	0.8-1%	0.3%	0.3-1%
Risk to siblings/ first degree rels	10%	2-3%	5-10%
Monozygotic (MZ) twin concordance	45%	40%	40%
Dizygotic (DZ) twin concordance	5-10%	5%	5%
Risk in adoption studies	8%	-	14% (but small sample)

Heritability: examples

		•		•
•	Sch	izop	hrer	าเล
				•••

Autism

Bipolar

Unipolar depression

Alcohol dependence

Anxiety disorders

80%+

80%+

60%

40-70%

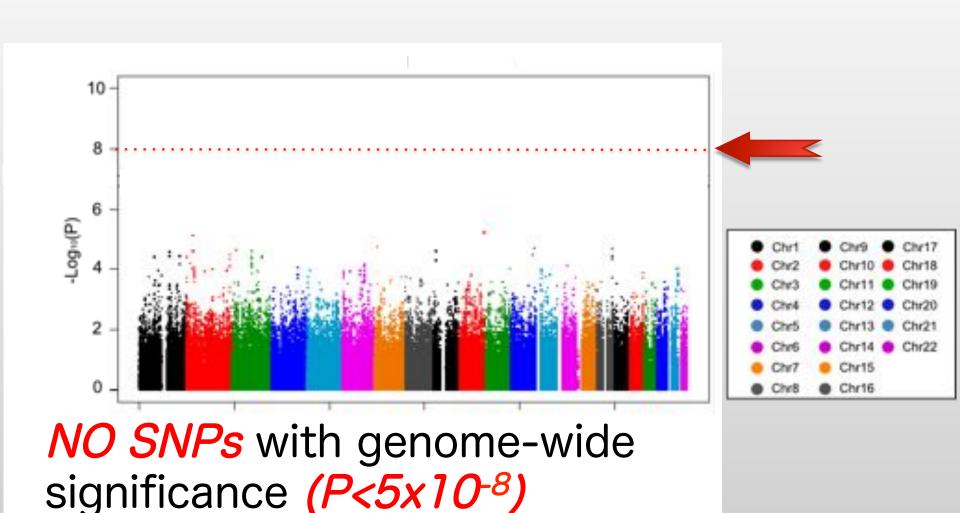
50-60%

20-30%

Copyright materials

Our Platform (affy 5.0)

Meta Analysis


Samples (SNP-based analysis)

• GWAS (JPN)

- 575 schizophrenia
- 564 controls
- Rep_JPN
 - Replication (main sample for follow-up)
 - 1511 schizophrenia
 - 1517 controls
 - Replication2 (additional con: JPN, public database)
 - 934 controls (Genotyped by Illumina550)
- Replication3 (WTCCC_scz: UK)
 - 479 schizophrenia
 - 2938 controls (Genotyped by Affy 500K)

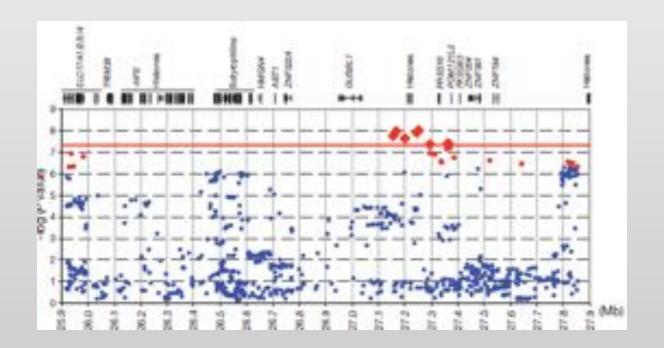
Manhattan Plot

: GWAS sample (~1,200 sample)

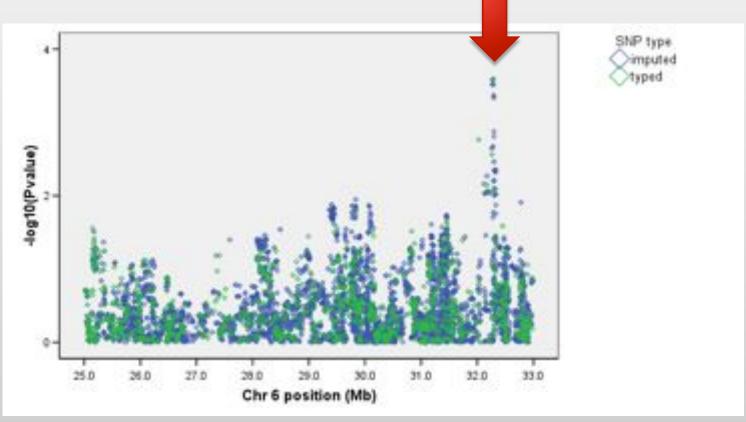
Result: CMH analysis

: meta analysis (~8,000 sample)

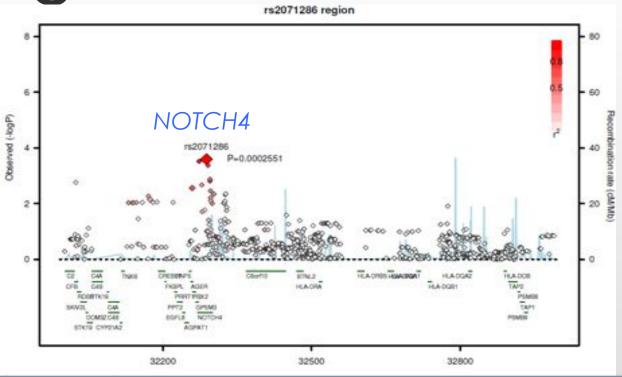
			Meta _all				
CHR	SNP	closest gene	MAF	P _{CMH}	OR		
2	rs11895771	SULT6B1	0.49	3.7X10 ⁻⁵	0.84		
7	rs1011131	LOC392288	0.070	1.2X10 ⁻⁴	1.30		
14	rs1176970	LOC644919	0.15	1.4X10 ⁻⁴	1.22		
1	rs4908274	COL11A1	0.28	3.1X10 ⁻⁴	1.20		
6	rs2294424	C6orf105	0.41	5.0X10 ⁻⁴	1.15		
2	rs13010889		0.15	0.0011	0.85		
2	rs17026152		0.26	0.0012	0.85		
6	rs2787566	GRIK2	0.039	0.0014	1.34		
6	rs2071286	NOTCH4	0.19	0.0014	0.87		
8	rs17462248		0.20	0.0017	1.16		



Again, NO SNPs with genome-wide significance (P<5x10⁻⁸)

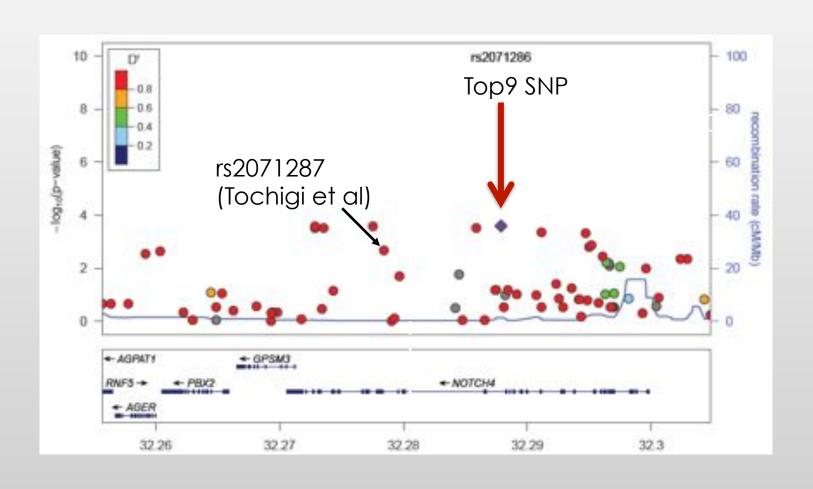

Promising candidate region reported in already published GWASes focused on schizophrenia

- Several candidate genes with genome-wide significance (5X10⁻⁸)
 - MHC region on Chr6 by SGENE, ISC, MGS, PGC

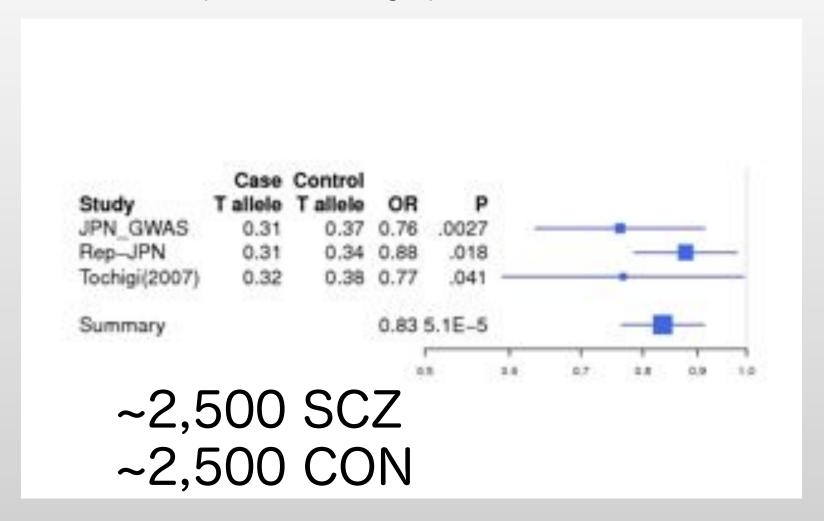


Japanese GWAS data low magnification on MHC

MHC region on Chr6

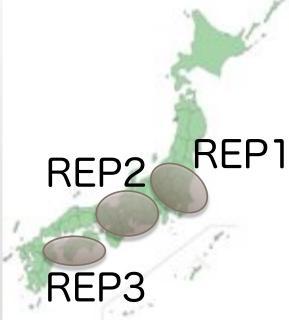


Zooming in!


			Meta _all						
CHR	SNP	closest gene	MAF	P _{CMH}	OR	L95	U95		
2	rs11895771	SULT6B1	0.4892	3.7X10 ⁻⁵	0.84	0.7708	0.9117		
7	rs1011131	LOC392288	0.07039	1.2X10 ⁻⁴	1.30	1.136	1.48		
14	rs1176970	LOC644919	0.1524	1.4X10 ⁻⁴	1.22	1.10	1.354		
1	rs4908274	COL11A1	0.28	3.1X10 ⁻⁴	1.20	1.087	1.324		
6	rs2294424	C6orf105	0.4128	5.0X10 ⁻⁴	1.15	1.063	1.244		
2	rs13010889		0.1524	0.0011	0.85	0.7716	0.9375		
2	rs17026152		0.2618	0.0012	0.85	0.7673	0.9369		
6	rs2787566	GRIK2	0.03883	0.0014	1.34	1.12	1.609		
6	rs2071286	NOTCH4	0.1929	0.0014	0.87	0.791	0.9459		
8	rs17462248		0.1988	0.0017	1.16	1.056	1.268		

Maximum magnification

Follow up analysis for NOTCH4 (rs2071287)


Meta_JPN + previously published data (JPN)

Further Replication

- Samples used in the previous paper (Ikeda et al)
 - JPN_GWAS: 542 SCZ vs 525 CON
 - REP_JPN: 1471 SCZ vs 1493 CON
 - Tochigi et al: 241 SCZ vs 290 CON

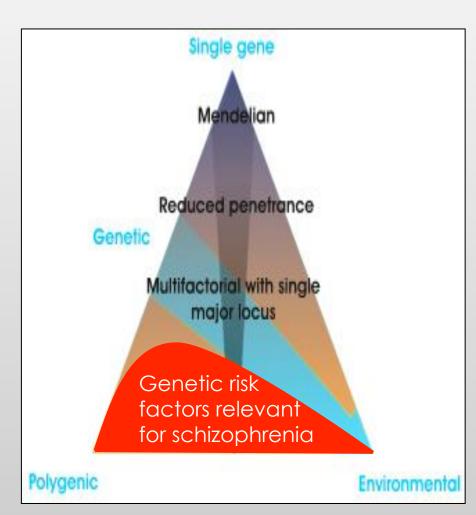
- New samples
 - REP1:3150 SCZ vs 3483 CON, Mid-East JPN
 - REP2: 672 SCZ vs 5321 CON, Mid-West JPN
 - REP3: 569 SCZ vs 1622 CON, South Island: Shikoku Island JPN

Extra samples: ~4,400 SCZ ~10,000 CON

Meta-analysis

			Case	Control						
	N cases	N controls	T allele	T allele	OR	Р				
Prior study (Ikeda et al, 2010)										
JPN_GWAS (2010)	542	525	0.31	0.37	0.76	0.0027				
Rep_JPN (2010)	1471	1493	0.31	0.34	0.88	0.018			_	
Tochigi et al (2007)	241	290	0.32	0.38	0.77	0.041		-		
-Summary1 (lkeda et al, 2010)	2254	2308	0.31	0.35	0.83	5.1E-5				
Current study										
REP1 (Mid East JPN)	3173	3540	0.33	0.35	0.91	0.0077				
REP2 (Mid West JPN)	672	5321	0.31	0.34	0.86	0.02				
REP3 (South Island JPN: Shikoku)	569	1622	0.28	0.31	0.87	0.057			•	-
-Summary2 (replication:REP1-3)	4414	10483	0.32	0.34	0.89	7.9E-5				
ALL combined	6668	12791	0.32	0.34	0.87	3.4E-8		4		
ALL COMBINED	0000	12701	0.02	0.01	0.07	J. 12 J				
						0.5	0.7	' 0.8	0.9 1	i.0 1.1
T										

Total~6,700 SCZ
~13,000 CON

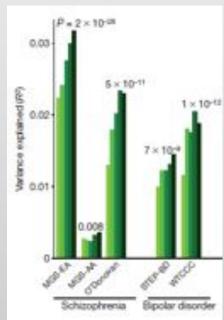

First genome wide significant P-value in Japanese schizophrenia population based sample

Today's topics:

- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up

Next we explored the concept of polygenic Component Analysis (PSA) using our dataset…

- •We know that schizophrenia is polygenic
- •We know that in case of common SNPs risk effect size is small
- •Recent studies showed that in case of schizophrenia common variants do have an important role en masse (cumulative risk effect)



GWAS in schizophrenia (2)

Polygenic Component Analysis

- Method used by International SCZ Consortium (ISC)
- Non stringent definition of risk SNPs (e.g. P<0.3)

 $\sum xi$

GWAS data set

Two GWAS sample sets are needed for polygenic component analysis!

Typical genome wide association analysis

Polygenic component analysis

SNP1 SNP2 SNP3 SNP4 ----Risk allele A T G C
P .10 .26 .68 .05

Calculate P value for SNPs/alleles based on discovery sample

Discovery sample set

P_T<0.5

SNP1 SNP2 SNP3 SNP4 ----
Risk allele A T G C

P .10 .26 .68 .05

Assign non stringent statistical threshold (P_T : P threshold) and define <u>risk SNPs/alleles (e.g.</u>

P_T<0.5) based on <u>discovery sample</u>

Discovery sample set

 $P_{T} < 0.5$

SNP1 SNP2 SNP3 SNP4 -----

Risk allele A T G C

P .10 .26 .68 .05

<u>Check the</u> <u>genotypes in</u> TARGET sample

Target SNP1 SNP2 SNP3 SNP4 sample set case1 AA TT CT CT AT TT case2 con1 AT TC TT TC con2

Discovery sample set

 $P_{T} < 0.5$

CT

SNP1 SNP2 SNP3 SNP4

Risk allele A

.10 .05 .68 .26

Count number of risk alleles in cases and controls

(TARGET sample)

Target sample set

SNP4 SNP2 SNP3 SNP1

case1 AA TT

CI AT TT case2

con1 AT TC TC con2

Polygenic score

SNP1 SNP2 SNP4

$$2 + 2 + 1 = 5$$

$$1 + 2 + 1 = 4$$

$$1 + 1 + 0 = 2$$

$$0 + 1 + 0 = 1$$

Discovery sample set

 $P_{T} < 0.5$

SNP1 SNP2 SNP3 SNP4 ----

Risk allele A T G C

P .10 .26 .68 .05

Calculate mean polygenic score

(TARGET sample)

Target sample SNP1 SNP2 SNP3 SNP4	4
-----------------------------------	---

case1 AA TT CT case2 AT TT CT

con1 AT TC TT

con2 TT TC T

Polygenic score

SNP1 SNP2 SNP4 Mean

$$2 + 2 + 1 = 5$$

$$1 + 2 + 1 = 4$$

$$1 + 1 + 0 = 2$$

$$0 + 1 + 0 = 1$$

4.5

Discovery sample set

 $P_{T} < 0.5$

Risk allele A T G C

P .10 .26 .68 .05

<u>Compare</u> <u>mean values</u>

TARGET sample

Target sample SNP1 SNP2 SNP3 SNP4

case1 AA TT CT

case2 AT TT CT

con1 AT TC TT

con2 TT TC TT

Polygenic score

SNP1 SNP2 SNP4 Mean

$$2 + 2 + 1 = 5$$

$$1 + 2 + 1 = 4$$

$$1 + 1 + 0 = 2$$

$$0 + 1 + 0 = 1$$

Samples used for Polygenic Score Analysis (PSA)

Datasets

JPNWTCCC SchizophreniaWTCCC Bipolar

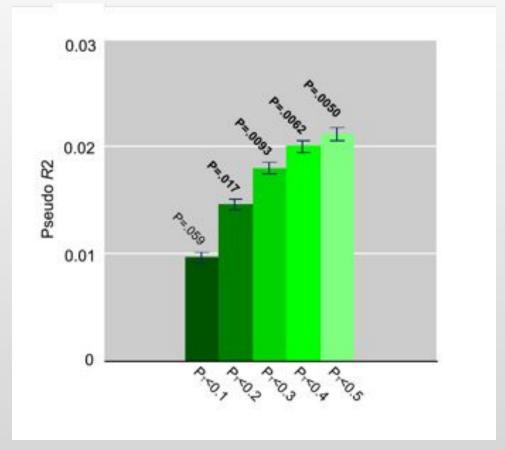
479 SCZ vs 2938 CON (O'Donovan et al ,2008)

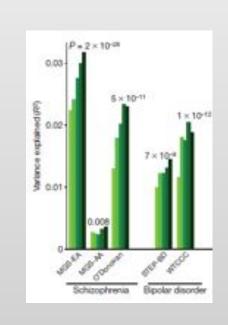
1868 BP vs 2938 CON (WTCCC, 2007)

- Statistical analysis
 - Logistic Regression
 - P value
 - Nagelkerke Pseudo R² as measure of explained variability
 - The more variability explained, the better the model

Polygenic component analysis (PCA) -Central hypothesis-

- Can PCA predict
 - status (schizophrenia or healthy) within Japanese GWAS sample
 - status within UK sample based on Japanese SNPs and vice versa

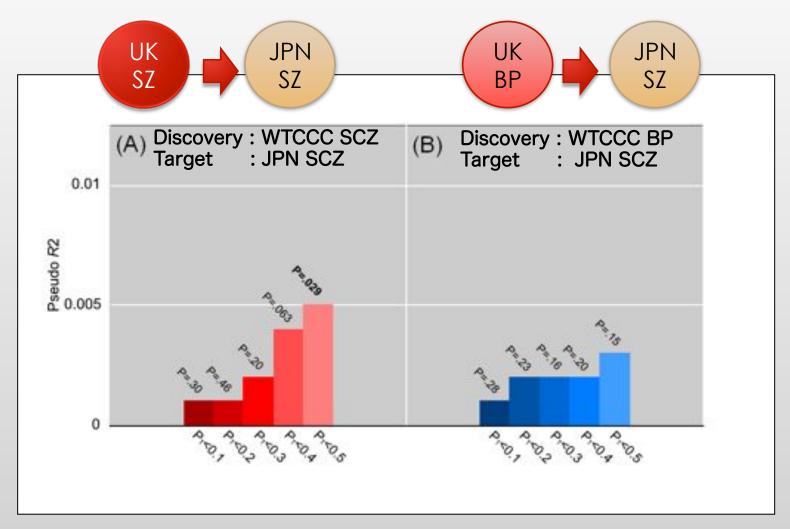

Discovery/Target pair Within JPN samples: random Division


Case Control

Only one GWAS dataset in JPN sample ...

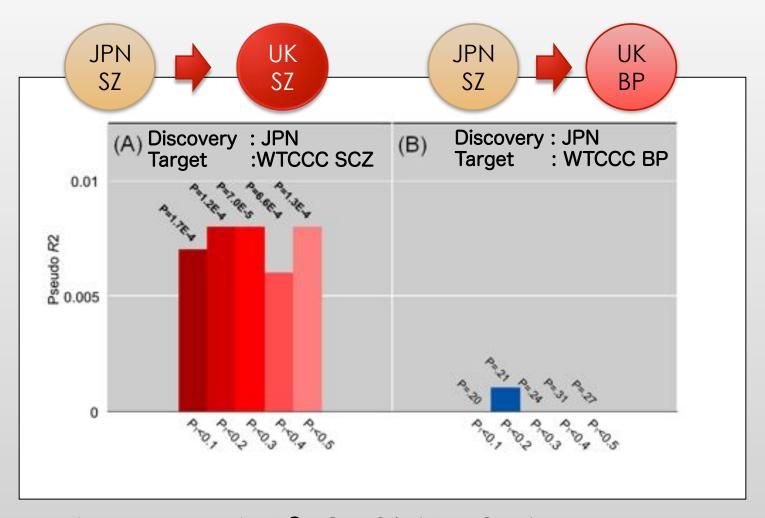
Discovery set For 'risk' alleles Target set For polygenic scores

Within JPN samples 1st/2nd: discovery/target pair



Significant enrichment (risk alleles) $R^2 \sim 2\%$ (P_T<0.5) \rightarrow en masse increase the risk # R^2 in ISC 3%

PCA Results

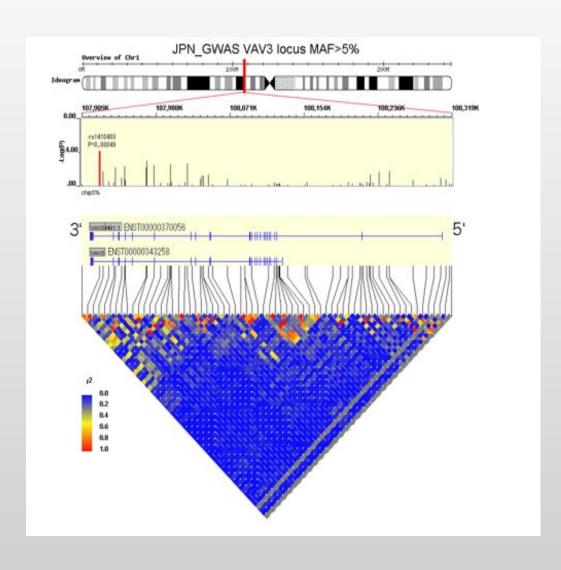

(UK schizophrenia and bipolar SNPs vs. Japanese schizophrenia SNPs)

Low pseudoR 2 ~0.5% (P $_{\top}$ <0.5)

PCA Results

(Japanese schizophrenia SNPs vs. UK schizophrenia and bipolar SNPs)

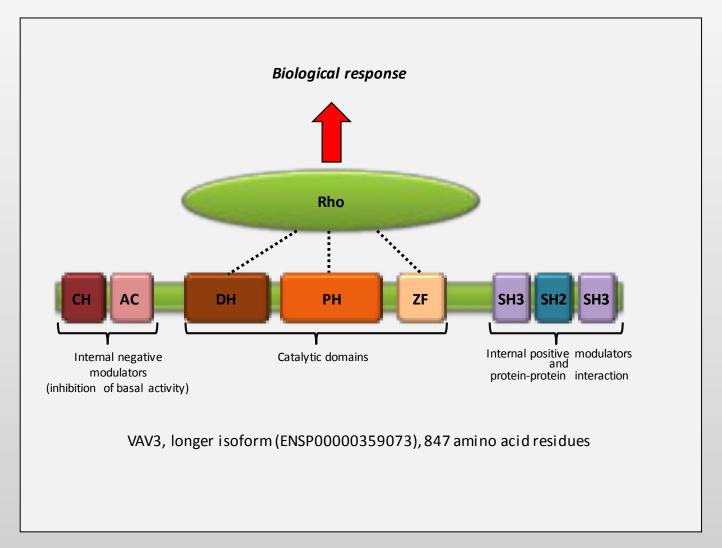
Low pseudoR 2 ~0.7% (P $_{\top}$ <0.5)


Summary: GWAS

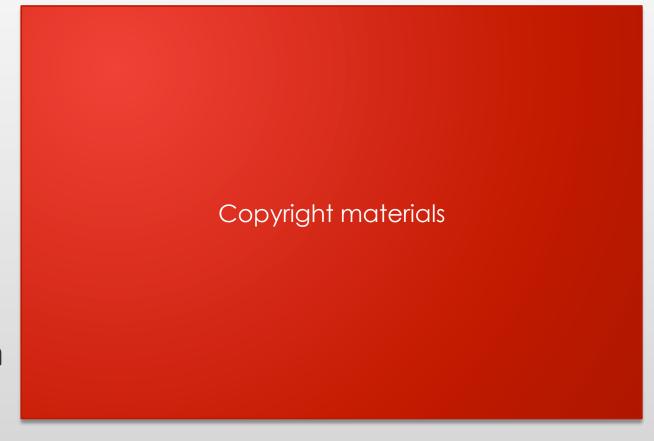
- Effect size of risk SNPs (common) is very small
- It is important to chase sub GWAS P-threshold in underpowered sample sets
- We replicated the observation of a polygenic component to schizophrenia within the Japanese population (p = .005)
- Our trans Japan-UK analysis of schizophrenia also revealed a significant correlation (best p = 7.0×10^{-5}) in the polygenic component across populations
- These results indicate a shared polygenic risk of schizophrenia between Japanese and Caucasian samples, although we did not detect unequivocal evidence for a novel susceptibility gene for schizophrenia

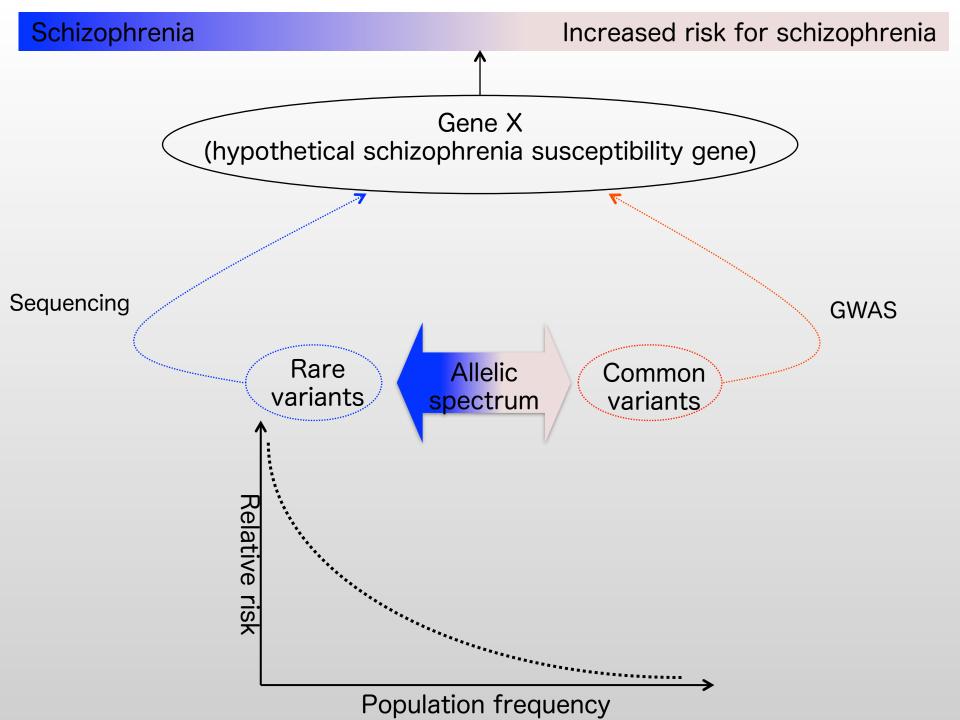
Today's topics:

- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up


Association signal in JGWAS

Gene centered data:

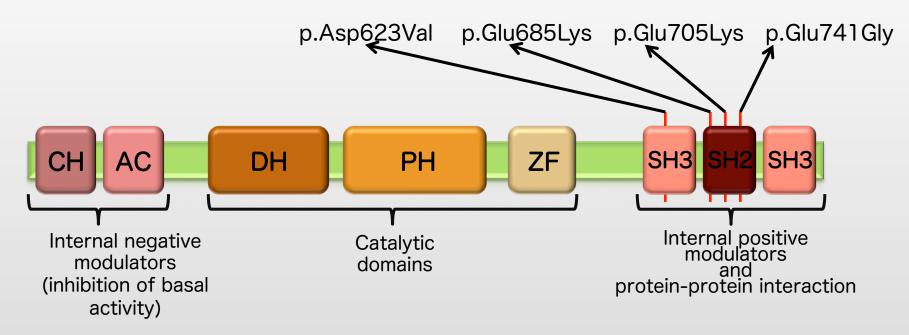

- Location: 1p13.3
- Size: 400 kbps
- 2 isoforms has been reported


VAV3 structure

VAV3 and Schizophrenia

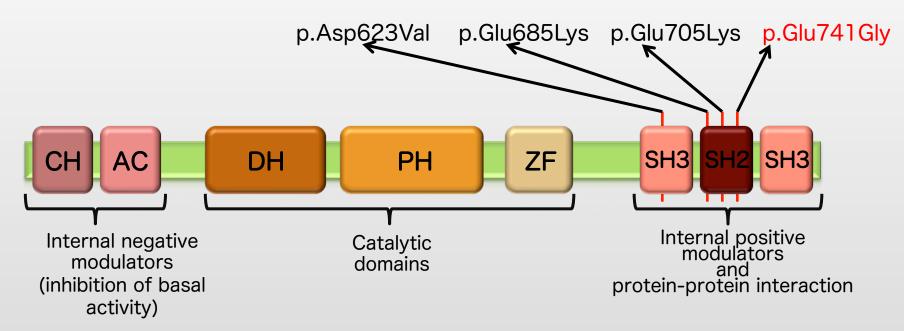
- Related to the axon guidance (process identified as disturbed in schizophrenic patients)
- Identified by linkage study in Japanese population

Our study of VAV3

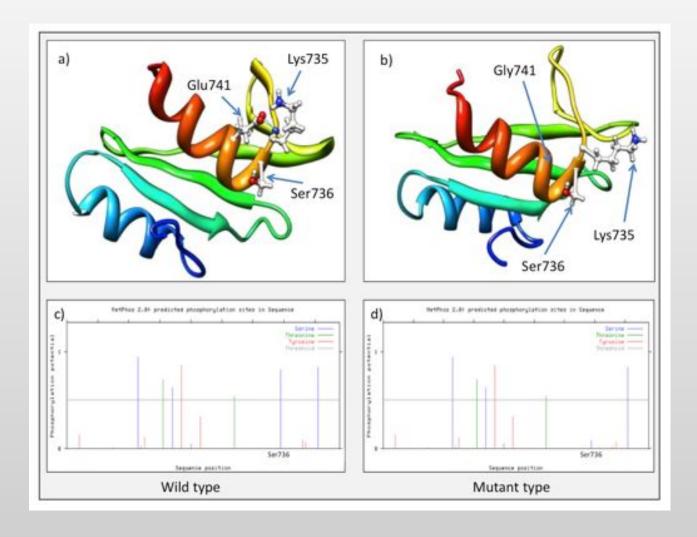

- Mutation screening and association analysis of associated rare variants
- Check the effect of associated common SNP on brain morphology (MRI)

FOCUS ON THE RARE VARIANTS

Mutation screening -strategy-


- Custom array resequencing method
- Focusing on exons only
 - Novel rare missense/nonsense variants
- Screening only cases (N=321)
- Follow up candidates in large case-control sample

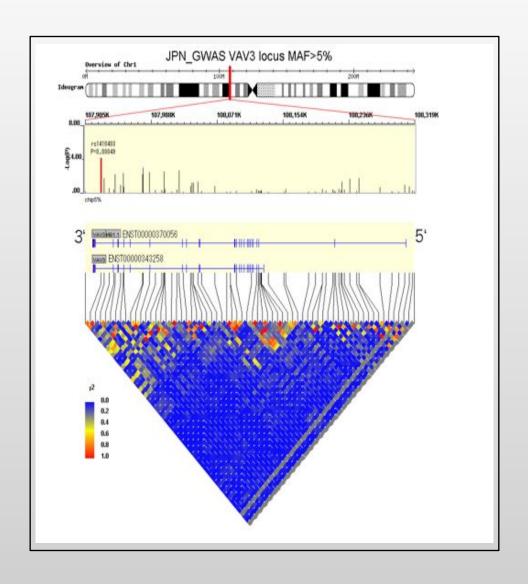
Discovered variants


Species	Protein	n Acn622Val	n Clucorius	n Glu70Elve	p.Glu741Gly	Pairwise Alignment Scores vs H.sapiens			
Species	Protein	p.Asp623Val	p.Glu685Lys	p.Glu705Lys	p.Glu741Gly	Protein identity % DNA Identity %		Substitution Rate	
Homo sapiens	NP_006104.4	L Q A G D T V	L Q A E T E L	K E S G E Y A	L M E L V E Y	n/a	n/a	n/a	
Canis lupus familiaris	XP_537047.2	I Q A G D T V	L Q A E T E L	K E S G E Y A	L M E L V E Y	97.1	92.9	0.075	
Bos taurus	XP_615898.4	I Q A G D T V	L Q A E T E L	R E S G E Y A	L M E L V E Y	95.7	92.8	0.076	
Mus musculus	NP_065251.2	I Q A G D T V	L Q A E T E L	K E S G E Y A	L M E L V E Y	95.4	90.5	0.101	
Rattus norvegicus	XP_227600.4	I Q A G D T V	L Q A E T E L	K E S G E Y A	L M E L V E Y	94.8	89.6	0.112	
Gallus gallus	NP_996745.1	IQIGDTI	L Q A E S E L	K E S G E Y A	L M E L V D Y	86.3	81.3	0.215	
Danio rerio	XP_687553.3	AQIGDVI	H H A E S E L	R E S R E Y A	V L G L V E Y	71.2	68.2	0.414	
Caenorhabditis elegans	NP_001041223.1	F A K G D R I	A K A E S T L	K N R K Q T A	T V E L V Q Y	35.3	46.0	0.953	

Association analysis

Chr	Variant	Physical position ¹	Protein domain	M ²	JMut (minor allele count)	m ²	JPN_GWAS (MAF) N=1100			Rep_JPN (MAF) N=3000				Meta analysis N=4200		
							Cases ³	Control ³	P _{allele}	OR ⁴	Cases ³	Control ³	P _{allele}	OR ⁴	P _{CMH} ⁵	OR ⁴
1	p.Asp623Val	107,986,810	N-SH3	Α	2	T	0.0006964	0.0008993	0.8561	0.7742	0.0003344	0	0.3171	NA	0.6649	1.662
1	p.Glu685Lys	107,947,271	SH2	G	1	Α	0.0006974	0.001821	0.4151	0.3824	0.0003336	0	0.3168	NA	0.8415	0.8246
1	p.Glu705Lys	107,947,211	SH2	G	3	Α	0.0007022	0.0009074	0.8557	0.7737	0.0006658	0.0003311	0.5605	2.011	0.7354	1.355
1	p.Glu741Gly	107,940,485	SH2	Α	7	G	0.004972	0.01087	0.09038	0.4547	0.0074480	0.0117400	0.0897	0.6314	0.02065	0.5821

In-silico modeling of SH2 domain (VAV3)



COMMON VARIANTS

Voxel based morphometry

- We followed up rs1410403 (SNP associated with schizophrenia in JGWAS
- $P_{CMH} = 9.3 \times 10^{-4}$, odds ratio=0.86
- case control sample was comprised of 100 patients with schizophrenia (38.3 ± 13.0) and 264 healthy controls (36.7 ± 11.9)
- All magnetic resonance imaging was performed on a 1.5T GE Sigma EXCITE system

Association signal in JGWAS

Gene centered data:

- Location:1p13.3
- Size: 400 kbps
- 2 isoforms has been reported

Effect on the brain morphology

Copyright materials

- Rs1410403 (A/G) was followed up
- Minor allele frequency (G) in CONTROLS of this SNP was 37%
- Minor allele frequency (G) in CASES of this SNP was 32%
- OR=0.86

Summary of findings

 p.Glu741Gly might be responsible for genetic susceptibility to schizophrenia-biological consequences are unknown (OR=0.52)

 Rs1410403 might influence volume of gray matter in schizophrenic patients (OR=0.86)

VAV3 effects of associated variants

- Change in protein structure
- Biological consequences unknown

- Protein structure unchanged
- Variation in gray matter volume

Low

Frequency

High

Challenges and future directions

- Consideration of the effect of environmental factors such as maternal infection or drug use
- Consideration of epigenetic mechanism
- Use of high-throughput whole genome sequencing
 - Has potential to detect virtually all SNPs/SNVs
 - Will provide comprehensive information of individual at DNA-single base pair level
 - Very costly

Take Home Messages

- Strong genetic basis of SZ proven from age-old family studies to the ultra modern GWAS
- Specific genes and loci are not definitely established (i.e. lack of consistent replication)
- Problem arising from multiple factors
 - Lack of operationalized phenotypes
 - Presence of large number of risk variants with relatively small effect size
 - Cost, manpower and expertise inadequacy

Thank you for your attention! Any questions or comments?

